skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Riehl, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Consider a locally cartesian closed category with an object$$\mathbb{I}$$and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of$$\mathbb{I}$$defines a trivial fibration. Then the fibrations are also closed under pushforward. 
    more » « less
  2. Abstract Many introductions tohomotopy type theoryand theunivalence axiomgloss over the semantics of this new formal system in traditional set‐based foundations. This expository article, written as lecture notes to accompany a three‐part mini course delivered at the Logic and Higher Structures workshop at CIRM‐Luminy, attempt to survey the state of the art, first presenting Voevodsky's simplicial model of univalent foundations and then touring Shulman's vast generalization, which provides an interpretation of homotopy type theory with strict univalent universes in any ‐topos. As we will explain, this achievement was the product of a community effort to abstract and streamline the original arguments as well as develop new lines of reasoning. 
    more » « less
  3. null (Ed.)
    In previous work, we introduce an axiomatic framework within which to prove theorems about many varieties of infinite-dimensional categories simultaneously. In this paper, we establish criteria implying that an ∞-category --- for instance, a quasi-category, a complete Segal space, or a Segal category --- is complete and cocomplete, admitting limits and colimits indexed by any small simplicial set. Our strategy is to build (co)limits of diagrams indexed by a simplicial set inductively from (co)limits of restricted diagrams indexed by the pieces of its skeletal filtration. We show directly that the modules that express the universal properties of (co)limits of diagrams of these shapes are reconstructible as limits of the modules that express the universal properties of (co)limits of the restricted diagrams. We also prove that the Yoneda embedding preserves and reflects limits in a suitable sense, and deduce our main theorems as a consequence. 
    more » « less